Rabu, 20 Juli 2022

INDUKSI MATEMATIKA

INDUKSI MATEMATIKA 

Nama: Diena Naila Amalia

Kelas: XI IPS 1


INDUKSI MATEMATIKA 

Induksi matematika merupakan materi yang menjadi perluasan dari Logika matematika. Logika matematika sendiri mempelajari pernyataan yang bisa bernilai benar atau salah, ekivalen atau ingkaran sebuah pernyataan, dan juga berisi penarikan kesimpulan.

Induksi matematika menjadi sebuah metode pembuktian secara deduktif yang digunakan untuk membuktikan suatu pernyataan benar atau salah. Dimana merupakan suatu proses atau aktivitas berpikir untuk menarik kesimpulan berdasarkan pada kebenaran pernyataan yang berlaku secara umum sehingga pada pernyataan khusus atau tertentu juga bisa berlaku benar. Dalam induksi matematika ini, variabel dari suatu perumusan dibuktikan sebagai anggota dari himpunan bilangan asli.

A. Apa Itu Induksi Matematika?

Seperti yang udah gue singgung di atas, induksi matematika merupakan salah satu cara pembuktian rumus atau pernyataan matematika, atau lebih tepatnya metode pembuktian terhadap suatu pernyataan apakah pernyataan tersebut berlaku untuk setiap kasus. Supaya kebayang, sebaiknya kita langsung ke contoh kasus deh. Kasus yang seperti apa sih yang bisa diselesaikan dengan rumus induksi matematika? Kita masuk ke contoh yang sederhana aja deh ya. Misalkan gue punya deret bilangan seperti di bawah ini.

1

Langkah awal pembuktian untuk setiap n bilangan asli adalah nilai n tertentu, kita bisa mencari jumlah dari deret bilangan di atas. Sebagai contoh, untuk n=2, kita mendapatkan hasil demikian:

2

Ternyata untuk n=2, kita mendapatkan bahwa jumlah deretnya adalah 3.

Bagaimana dengan n=5? Gampang, tinggal kita hitung aja lagi begini:

3

Jumlahnya adalah 15. Kalau untuk n=8 gimana? Sama aja caranya:

4

Kita dapatkan bahwa untuk n=8, jumlah deret tersebut adalah 40.

Kemudian sudah mendapatkan informasi bahwa ternyata untuk menghitung jumlah deret tersebut untuk n bilangan asli berapapun, SUDAH ADA RUMUSNYA. Jadi, nggak perlu repot-repot menjumlahkan satu per satu seperti di atas, tapi tinggal kita masukkan saja nilai n ke dalam rumus tersebut. Bagaimana tuh rumusnya? Untuk deret di atas, rumus jumlahnya adalah demikian:

5

Wah, asik nih udah ada rumusnya. Berarti tinggal kita masukkin aja nilai n ke persamaan di atas untuk mencari jumlah deret tersebut. Nggak perlu jumlahin satu per satu. Nah, tapi sebagai matematikawan yang baik, kita harus skeptis nih, tahu dari mana bahwa rumus di atas itu benar? Tahu dari mana bahwa rumus tersebut berlaku untuk seluruh nilai n bilangan asli? Atau sederhananya

Pembuktian

Nah, sebelum masuk ke pembuktian dengan Induksi Matematika, coba deh kita tes dulu apakah nilai Sn itu benar untuk nilai-nilai n yang sebelumnya udah kita hitung. Kita mulai dari n=2.

6

Wah, ternyata benar nih. Hasilnya sama untuk n=2. Sekarang coba kita tes untuk n=5.

7

Untuk n=8

8

Bisa kita simpulkan bahwa rumus Sn ini benar lah ya? Eit, tunggu dulu. Kita baru menguji untuk tiga nilai n. Dalam matematika, kita tidak bisa melakukan generalisasi seperti itu. Untuk bisa membuktikan bahwa rumus Sn ini benar untuk semua kasus, kita harus benar-benar bisa membuktikan bahwa rumus Sn ini benar untuk SEMUA nilai n bilangan asli.

Wah, kalau mau membuktikan untuk semua nilai n, kapan selesainya? Kan ada banyak banget yang harus dicoba. Nilai n=9, nilai n=10, nilai n=100, nilai n=84349384, dan seterusnya. Ada tak hingga nilai n yang harus kita coba. Nggak mungkin bisa kita cobain semuanya.

Nah, itulah sebabnya kita perlu membuktikannya dengan menggunakan Induksi Matematika.

Dapat disimpulkan bahwa ada tiga langkah dalam induksi matematika yang diperlukan untuk membuktikan sebuah rumus, yaitu:

  1. Membuktikan bahwa rumus atau pernyataan tersebut benar untuk n = 1.
  2. Mengasumsikan bahwa rumus atau pernyataan tersebut benar untuk n = k.
  3. Membuktikan bahwa rumus atau pernyataan tersebut benar untuk n = k + 1.

Untuk menerapkan induksi matematika, kita harus bisa menyatakan pernyataan P (k + 1) ke dalam pernyataan P(k) yang diberikan. Untuk menyatakan persamaan P (k + 1), substitusikan kuantitas k + 1  ke dalam pernyataan P(k).

Konsep Dasar Induksi Matematika

Dengan menggunakan Induksi Matematika, kita bisa membuktikan rumus Sn di atas tanpa perlu menghitung satu per satu nilai Sn seperti di atas. Caranya simple banget. Kita cuma butuh melakukan dua langkah berikut ini:

  1. Buktikan bahwa rumus tersebut benar untuk nilai n dasar (pada contoh di atas, buktikan untuk n=1).
  2. Buktikan bahwa jika rumus tersebut benar untuk n=k, maka rumus tersebut juga benar untuk n=k+1.

LANGKAH 1: Buktikan bahwa Sn benar untuk n=1.

Langkah pertama ini gampang banget. Tinggal kita masukkan nilai n=1 ke persamaan, terus kita hitung deretnya, beres. Kesimpulannya: S1 benar (Sn benar untuk n=1). Lanjut ke langkah 2.

LANGKAH 2: Buktikan bahwa jika benar untuk n=k, maka dia benar juga untuk n=k+1.

Ini bagian menariknya. Karena pada langkah pertama kita sudah membuktikan bahwa Sn benar untuk n=1, berarti dia benar juga untuk n=2. Kalau Sn benar untuk n=2, maka Sn benar juga untuk n=3. Kalau Sn benar untuk n=3, maka Sn benar juga untuk n=4. Dan seterusnya sampai n tak hingga.

Kalau penjelasan di atas masih kurang jelas, coba telaah pelan-pelan deh ya. Jadi bayangkan bahwa pembuktian yang kita lakukan di langkah 1 dan 2 tadi kita nyatakan dalam dua premis, premis 1 untuk pernyataan pada langkah 2 dan premis 2 untuk pernyataan pada langkah 1. Jadinya begini:

Premis 1: Jika Sn benar untuk n=k, maka Sn benar untuk n=k+1

Premis 2: Sn benar untuk n=1

Kesimpulan: ?

Nah, kalau kita memiliki dua premis seperti itu, apa kesimpulan yang dapat diambil? Berhubung nilai k=1, berarti k+1 itu adalah 2 dong ya? Berarti kesimpulan dari pembuktian induksi matematika adalah Sn benar untuk n=2. Sekarang kita lanjutkan lagi dengan kesimpulan barusan kita masukkan ke dalam premis 2.

Premis 1: Jika Sn benar untuk n=k, maka Sn benar untuk n=k+1

Premis 2: Sn benar untuk n=2

Kesimpulan: ?

Kesimpulannya adalah? Gampang ya, yaitu Sn benar untuk n=3. Ini masih bisa kita lanjutkan lagi dengan teknik yang sama. Kesimpulan ini kita jadikan premis 2.

Premis 1: Jika Sn benar untuk n=k, maka Sn benar untuk n=k+1

Premis 2: Sn benar untuk n=3

Kesimpulan: ?

Apa kesimpulan dari kedua premis di atas? Yup, kesimpulannya adalah, Sn benar untuk n=4. Elo bisa lanjutkan proses ini sampai seterusnya kalau mau. Tapi pada suatu titik kita harus berhenti melakukan ini dan mulai berpikir lagi.

Jadi, kalau proses ini kita lanjutkan, kita akan mendapatkan kesimpulan bahwa Sn benar untuk semua n bilangan asli.

Pembuktian dengan Induksi Matematika

Nah, di atas kita udah mempelajari konsep dasar dari Induksi Matematika ya. Sekarang, kita lanjut ke proses pembuktian dengan Induksi Matematikanya. Kita balik lagi ke contoh di atas, yaitu deret ini:

9

Deret ini memiliki Un = n dan Sn = n(n+1)/2. Coba kita buktikan dengan Induksi Matematika bahwa rumus Sn ini benar.

LANGKAH 1: Buktikan bahwa Sn benar untuk n=1.

Bagian ini gampang nih. Kita tahu bahwa untuk n=1, jumlahnya harus sama dengan 1. Berarti kalau S1 itu sama dengan 1, langkah satu beres.

10

Sip. Rumus Sn ini lolos pada langkah satu. Berikutnya, langkah 2.

LANGKAH 2: Buktikan bahwa jika Sn benar untuk n=k, maka Sn juga benar untuk n=k+1.

Nah, untuk bagian ini, teknik membuktikannya adalah dengan membuktikan bahwa persamaan di bawah ini benar.

11

Kalau persamaan di atas benar, itu sama saja dengan membuktikan bahwa jika Sk benar, maka Sk+1 juga benar.

So, kalau kita masukkan n=k dan n=k+1 pada rumus Sn, maka kita akan mendapatkan:

12

Kalau begitu, tinggal kita buktikan saja dengan cara demikian:

13

Bagian (k+1)-nya kita kotakin kemudian kita keluarkan (hukum distributif)

14

Sehingga kita dapatkan:

15

Ternyata hasilnya sama peris dengan Sk+1 yang kita hitung pada tabel di atas. Berarti kita dapat simpulkan bahwa persamaan berikut ini:

16

Adalah benar!

Karena Sn terbukti benar pada langkah 1 dan juga terbukti benar pada langkah 2, maka kita bisa simpulkan bahwa rumus Sn benar untuk semua n bilangan asli


B. Contoh Soal Induksi Matematika Deret #1

Silakan kalian buktikan 2 + 4 + 6 + 8 + 10 +… + 2n = n(n + 1), jika untuk seluruh n merupakan bilangan asli.

Jawaban :

P(n) : 2 + 4 + 6 + 8 + 10 + … + 2n = n(n + 1), hal tersebut bisa kita mulai buktikan dengan P(n) dinyatakan benar jika untuk seluruh n ∈ N.

  • Langkah pertama yaitu menunjukan jika P(1) benar. 2 = 1(1 + 1), hingga kemudian kita dapatkan jika P(1) benar.
  • Langkah induksi yaitu mengibaratkan jika P(k) dapat dinyatakan benar, 2 + 4 + 6 + 8 + 10 +… + 2k = k(k + 1), apabila seluruh k ∈ N. Sehingga hal tersebut dapat menunjukan jika P(k + 1) juga bisa dinyatakan benar sehingga menghasilkan 2 + 4 + 6 + 8 + 10 +… + 2k + 2(k + 1) = (k + 1)(k + 1 + 1) dari asumsi tersebut maka dapat menghasilkan lagi 2 + 4 + 6 + 8 + 10 +… + 2k = k(k + 1).

Kemudian selanjutnya kamu bisa melakukan penambahan di kedua ruas dengan uk+1, seperti pada contoh berikut di bawah ini :
2 + 4 + 6 + 8 + 10 + … + 2k + 2(k + 1) = k(k + 1) + 2(k + 1)
2 + 4 + 6 + 8 + 10 + … + 2k + 2(k + 1) = (k + 1)(k + 2)
2 + 4 + 6 + 8 + 10 + … + 2k + 2(k + 1) = (k + 1)(k + 1 + 1)

Dengan begitu bisa disimpulkan jika P(k + 1) dapat dinyatakan benar, dimana P(n) merupakan benar untuk seluruh n bilangan asli.

Contoh Soal Induksi Matematika Deret #2

Silakan kalian buktikan 1 + 3 + 5 + 7 + 9 +… + (2n − 1) = n2 , jika untuk seluruh n merupakan bilangan asli.

Pembahasan :

P(n) : 1 + 3 + 5 + 7 + 9 +… + (2n − 1) = n², hal tersebut bisa kita mulai buktikan dengan P(n) dinyatakan benar jika untuk seluruh n ∈ N.

  • Langkah pertama yaitu menunjukan jika P(1) benar. 1 = 1², hingga kemudian kita dapatkan jika P(1) benar.
  • Langkah induksi yaitu mengibaratkan jika P(k) dapat dinyatakan benar, 1 + 3 + 5 + 7 + 9 +… + (2k − 1) = k², k ∈ N, apabila seluruh k ∈ N. Sehingga hal tersebut dapat menunjukan jika P(k + 1) juga bisa dinyatakan benar sehingga menghasilkan 1 + 3 + 5 + 7 + 9 +… + (2k − 1) + (2(k + 1) − 1) = (k + 1)2² dari asumsi tersebut maka dapat menghasilkan lagi 1 + 3 + 5 + … + (2k − 1) = k².

Kemudian selanjutnya kamu bisa melakukan penambahan di kedua ruas dengan uk+1, seperti pada contoh berikut di bawah ini :
1 + 3 + 5 + 7 + 9 +… + (2k − 1) + (2(k + 1) − 1) = k² + (2(k + 1) − 1)
1 + 3 + 5 + 7 + 9 + … + (2k − 1) + (2(k + 1) − 1) = k² + 2k + 1
1 + 3 + 5 + 7 + 9 + … + (2k − 1) + (2(k + 1) − 1) = (k + 1)²

Dengan begitu bisa disimpulkan jika P(k + 1) dapat dinyatakan benar, dimana P(n) merupakan benar untuk seluruh n bilangan asli.

C. Latihan Soal

Soal 1

Buktikanlah jika 32n + 22n + 2 benar-benar habis dibagi 5. 

Agar bisa membuktikannya, maka sebaiknya Anda menerapkan beberapa tahapan diantaranya:

Langkah Pertama 

32(1) + 22(1)+2 = 32 + 24 = 9 + 16 = 25, jadi benar-benar habis dibagi 5. Hal ini terbukti.


Langkah Kedua Menggunakan 2 (n = k)

32k + 22k + 2

Langkah Ketiga ( = k + 1)

= 32(k+1) + 22(2k+2) 

= 32k+2 + 22k+2+2

= 32(32k) + 22(22k+2)

= 10(32k) + 5(22k+2) – 32k – 22k+2

= 10 (32k) + 5 (22k+2) – (32k + 22k+2)


Diperoleh:

10 (32k) sudah habis dibagi 5, 5(22k+2) sudah habis dibagi 5 dan –(32k) + 22k+2 juga habis dibagi 5. 

Semua bilangan bulat tidak negatif n, buktikan dengan memakai induksi matematika bahwa 20 + 21 + 22 + … + 2n = 2n+1 – 1.

Cari tahu basis induksi terlebih dahulu yaitu 20 = 20+1 – 1. Jadi, sangat jelas bahwa 20 = 1

Jika p(n) benar, yakni 20 + 21 + 22 + … + 2n = 2n+1 – 1 adalah benar, maka tunjukkan bahwa p(n+1) juga benar: 20 + 21 + 22 + … + 2n = 2n+1 – 1 juga benar, maka tunjukkan bahwa 20 + 21 + 22 + … + 2n + 2n+1 = (20 + 21 + 22 + … + 2n) + 2n+1 = (2n+1 – 1) + 2n+1 (hipotesis induksi). 

= (2n+1 + 2n+1) – 1

= (2.2n+1) – 1

= 2n+2 – 1 

= 2(n+1)+1 – 1 

Maka dapat dibuktikan bahwa semua bilangan bulat tidak negatif n, terbukti bahwa 20 + 21 + 22 + … + 2n = 2n+1 – 1. 


Soal 2

Buktikan bahwa 1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{1}{4} n^2 (n + 1)^2.

Pembahasan:

  • Langkah 1

1^3 = \frac{1}{4}(1)^2(1 + 1)^2 = \frac{2^2}{4}

1 = 1    (terbukti)

  • Langkah 2 (n = k)

1^3 + 2^3 + 3^3 + \cdots + k^3 = \frac{1}{4}k^2(k + 1)^2

  • Langkah 3 (n = k + 1)

1^3 + 2^3 + 3^3 + \cdots + k^3(k + 1)^3 = \frac{1}{4}(k + 1)^2 (k + 2)^3.

 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1 )^3 + (k + 1)^3 = \frac{1}{4}k^2(k + 1)^2 + (k + 1)^3   (kedua ruas ditambah (k + 1)^3.

 1^3 + 2^3 + 3^3 + \cdots + (k + 1)^3= (k + 1)^2 (\frac{1}{4}k^2 + (k + 1))

 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k +1)^3 = (k + 1)

 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4}(k + 1)^2 (k^2 + 4k + 4)

 1^3 + 2^3 +3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4}(k + 1)^2(k + 2)(k + 2)

 1^3 + 2^3 + 3^3 + \cdots + k^3 + (k + 1)^3 = \frac{1}{4}(k + 1)^2(k + 2)^2     {terbukti).

Daftar Pustaka:

1. https://mamikos.com/info/contoh-soal-induksi-matematika-pljr/

2. https://www.studiobelajar.com/induksi-matematika/

3. https://www.zenius.net/blog/induksi-matematika

4.https://id.wikipedia.org/wiki/Induksi_matematika#:~:text=Induksi%20matematika%20merupakan%20salah%20satu,teorema%20yang%20melibatkan%20bilangan%20asli.

5. https://www.studiobelajar.com/induksi-matematika/



REMEDIAL PAT

Diena Naila Amalia XI IPS 1